Chapter 13 Review Exercise Solutions

R13.1

Recursion solves a problem by using the solution to the same problem with simpler values.

Iteration uses some form of a loop (for loop, while loop) to solve a problem.

Infinite recursion occurs when the recursion never stops. A method calls itself over and over again and never reaches an end.

A recursive helper method is a recursive method that is called by another, usually non-recursive, method.

R13.2
If the array only has one element, return that element.

Otherwise, recursively find the smallest element of the array that is obtained by removing the last element. Then return the smaller of the last element and the value returned by that recursive call.

R13.3

If the array has no elements or only one element, you are done.

Otherwise, first find the smallest element in the array. After obtaining the smallest number, swap that number with the first element in the array and recursively sort the remaining numbers in the array.

R13.4

If n is 1, return a collection containing the empty set and the set { 1 }.
Otherwise, first find all subsets of the set { 1 ... n – 1 }. For each subset S in that collection, add two sets to the answer, namely S and S ∪ {n}.

R13.5

This algorithm begins with the numbers from 0 to n - 1 in ascending order. It then progresses until the numbers are in descending order at which point ‘hasMorePermutations’ returns false. At each step a new permutation is made such that the new sequence is lexicographically greater than the previous (e.g., 132 is lexicographically greater than 123; for this specific sequence of numbers one can think more directly of the step as creating a new permutation that is greater than the previous).

A new permutation is generated by finding in the previous permutation the rightmost pair of ascending values (i.e., the pair of ascending values that is nearest to the end of the sequence). If such a pair does not exist, then the final permutation has already been discovered (that in which the sequence is descending). If such a pair is found, then the rightmost value that is greater than the first of the pair is found. This is either the second value of the pair or a value to the right of the pair.

If the value found is the second of the pair, then the remainder of the sequence is descending. In this case, the two values of the pair are swapped and the remainder of the sequence is reversed (so that it is now ascending). This remaining portion will then be permuted to continue the lexicographical orderings.

If the value found is not the second of the pair, then it is the largest of the descending “tail” of the sequence and, thus, the next lexicographic option for the position of the first element of the pair. The tail is reversed to continue the lexicographic orderings.
R13.6

x0 = 1

xn = x × xn - 1
R13.7

x0 = 1

x2n + 1 = x × x2n, (odd case)

x2n = (xn)2, (even case)

The approach is significantly faster because it reduces the calls to "pow" to as little as 2 + log2 n, when n is a power of 2.

For example:

Using the first method:

x1023 took 1024 calls

x 1024 took 1025 calls

Using the second method:

x 1023 took 20 calls

x 1024 took 12 calls

R13.8
0! = 1

n! = n * (n - 1)!

R13.9

When computing fib(n), the function is called 2 * fib(n) - 1 times, as fibCount indicates.

import java.util.Scanner;

/**

 This program computes Fibonacci numbers using a recursive

 method.

*/

public class FibTester

{

 private static int fibCount;

 public static void main(String[] args)

 {

 Scanner in = new Scanner(System.in);

 System.out.print("Enter n: ");

 int n = in.nextInt();

 for (int i = 1; i <= n; i++)

 {

 fibCount = 0;

 long f = fib(i);

 System.out.println("fib(" + i + ") = " + f);

 System.out.println("number of times fib(n) is called = " + fibCount);

 }

 }

 /**

 Computes a Fibonacci number.

 @param n an integer

 @return the nth Fibonacci number

 */

 public static long fib(int n)

 {

 fibCount++;

 if (n <= 2) { return 1; }

 else { return fib(n - 1) + fib(n - 2); }

 }

}

R13.10

moves(1) = 2n – 1

To guess this formula, compute

moves(2) = 2 × moves(1) + 1 = 3

moves(3) = 2 × moves(2) + 1 = 7

moves(4) = 2 × moves(3) + 1 = 15

moves(5) = 2 × moves(4) + 1 = 31

The formula can then be verified by induction.

moves(1) = 1 = 21 – 1

moves(n) = 2 × moves(n – 1) + 1 = 2 × (2n – 1 – 1) + 1 = 2n – 1

R13.11

3-4+5

(Previous answer assumed ()’s around 3 - 4.)

• getExpressionValue calls getTermValue
• getTermValue calls getFactorValue
• getFactorValue returns 3

• getTermValue returns 3
• getExpressionValue consumes –

• getExpressionValue calls getTermValue

• getTermValue calls getFactorValue
• getFactorValue returns 4

• getTermValue returns 4

• getExpressionValue consumes +

• getExpressionValue calls getTermValue

• getTermValue calls getFactorValue
• getFactorValue returns 5

• getTermValue returns 5

• getExpressionValue returns 4 (-1 + 5)
3-(4+5)

• getExpressionValue calls getTermValue
• getTermValue calls getFactorValue
• getFactorValue returns 3

• getTermValue returns 3
• getExpressionValue consumes –

• getExpressionValue calls getTermValue
• getTermValue calls getFactorValue
• getFactorValue consumes the (input

• getFactorValue calls getExpressionValue

.• getExpressionValue calls getTermValue

• getTermValue calls getFactorValue
• getFactorValue returns 4

• getTermValue returns 4

• getExpressionValue consumes +

• getExpressionValue calls getTermValue

• getTermValue calls getFactorValue
• getFactorValue returns 5

• getTermValue returns 5

• getExpressionValue returns 9

• getFactorValue consumes the) input

• getFactorValue returns 9

• getTermValue returns 9

• getExpressionValue returns -6 (3 – 9)
(3-4)*5

• getExpressionValue calls getTermValue
• getTermValue calls getFactorValue
• getFactorValue consumes the (input

• getFactorValue calls getExpressionValue

.• getExpressionValue calls getTermValue

• getTermValue calls getFactorValue
• getFactorValue returns 3

• getTermValue returns 3

• getExpressionValue consumes -

• getExpressionValue calls getTermValue

• getTermValue calls getFactorValue
• getFactorValue returns 4

• getTermValue returns 4

• getExpressionValue returns -1

• getFactorValue consumes the) input

• getFactorValue returns -1

• getTermValue consumes *

• getTermValue calls getFactorValue
• getFactorValue returns 5

• getTermValue returns -5 (-1 * 5)

• getExpressionValue returns -5
3 * 4 + 5 * 6

• getExpressionValue calls getTermValue
• getTermValue calls getFactorValue
• getFactorValue returns 3
• getTermValue consumes *

• getTermValue calls getFactorValue
• getFactorValue returns 4

• getTermValue returns 12 (3 * 4)

• getExpressionValue consumes +
• getExpressionValue calls getTermValue
• getTermValue calls getFactorValue
• getFactorValue returns 5
• getTermValue consumes *

• getTermValue calls getFactorValue
• getFactorValue returns 6

• getTermValue returns 30 (5 * 6)
• getExpressionValue returns 42 (12 + 30)

© John Wiley & Sons, Inc. All rights reserved. 1

